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Summary. Historically, finite difference Schemes (FDS) defined in logically rectan-
gular grids have been widely used to get numerical approximations to the solution
of partial differential equations in simple domains, i.e., rectangular regions or those
suitable to be decomposed in rectangles, but when the region is not of this kind, the
classical schemes can not longer be applied. However, the development of efficient
methods for meshing irregular planar regions using quadrilateral elements allows
new schemes to be defined. In this paper, in order to solve numerically Stokes equa-
tion on an irregular domain using finite differences, we show the application of a
simple scheme derived from a local optimization problem.
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1 Introduction

Finite difference schemes on rectangular regions follow with ease from Tay-
lor’s theorem. However, its application to irregular domains requires a suitable
structured convex grid. Trying to overcome this problem, irregular regions
have been often approximated by block-rectangular regions, but for many ac-
tual domains this is a rather poor representation. An approach which preserves
the shape of the domain is given by coordinate transformations between the
physical region and a rectangle, which yields a transformed equation on the
latter whose solution can be approximated using the classical finite difference
schemes. Unfortunately, explicit changes of coordinates are only known for
simple, academic regions, and this is a serious limitation to the method.
More satisfactory results can be obtained for very irregular regions using dif-
ferences defined through structured grids generated by the variational grid
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generation method. This method consists of minimizing an appropriate func-
tional [1]. Area and harmonic functionals can be used for gridding a wide
variety of simple connected domains in the plane [2], whose boundaries are
closed polygonal Jordan curves with positive orientation.
Using these kind of structured convex grids, some authors have designed
schemes for the discretization of partial derivatives directly on the physical
region; we can mention for instance the works due to Steinberg, Shashkov,
Hyman and Castillo [3], and Tinoco et al [4]. Extending this idea, in [5] we
designed a new direct finite difference scheme for the numerical solution of
Poisson’s equation on irregular regions whose performance turned out to be
quite satisfactory. In this work, we apply this scheme in order to calculate the
numerical solution of Stokes equation.

2 Discretization of Stokes equation

Let us consider first an elliptic boundary value problem defined on a bounded,
simply connected, plane region Ω

Lu = Auxx +Buxy + Cuyy +Dux + Euy = F
u|∂Ω = u0, (1)

where the functions A,B,C,D,E, F depend on the variables x, y, and u0 is
the value of the unknown function at the boundary of the region. A nine-point
finite difference scheme for (1) at the point p ∈ Ω is a a linear combination of
the values of u at the points {q0,p, q1,p, . . . , qk,p} [6]

L0(p) = Γ0,pu(q0,p) + Γ1,pu(q1,p) + · · ·+ Γ8,pu(q8,p), (2)

such that the difference δp = L0(p)− [Lu]p is small.
Expanding [Lu]p at p, the proposed finite difference scheme is obtained by
solving the least square problem

minR2
6 + R2

7 +R2
8 +R2

9

s. t. Ri = 0, i = 0, · · · , 5. (3)

where
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are the order one and two residuals, ∆xi, ∆yi are the x and y components of
qk,p − p, and
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are the third order residuals.
Once the difference scheme defined by equation (3) is available, it is possible
to generate schemes for first and second order differential equations. The nu-
merical solution of Poisson’s equation was addressed in [5], and its application
is very simple.
Stokes equations are given by

−∇2U = ∇P + F, (4)

∇ ·U = 0, (5)

where u and v are the velocity components of the fluid, U = (u, v)T , P is the
pressure, and f1 and f2 are the components of the applied body force, and
F = (f1, f2)T . It describes the type of fluid flow where advective inertial forces
are small when compared with viscous forces, a situation in flows where the
fluid velocities are very slow, the viscosities are very large, or the length-scales
of the flow are very small.
At every point pi,j of the set of inner grid points {pi,j}, there are three un-
knowns, ui,j , vi,j and Pi,j . However, even though it is possible to discretize
(4) and (5) directly, due to inf-sup condition [7], it is not convenient to ap-
proximate the velocity field and the pressure simultaneously using the second
order finite differences defined by (3), since they are closely related to bilinear
finite elements on triangular elements. A better strategy is to rewrite Stokes
equation first.
Divergence of (4) and condition (5) yield ∇2P = 0. This is a Laplace problem
whose solution can be approximated by means of

DP̂ = FP (6)

where1 P̂ = (P1,1, · · · , Pmn)
T

, D is the matrix representation of −∇2, ob-
tained by solving the optimization problem (3) with A = −1, B = 0, C = −1,
D = 0, and E = 0 at every point of P, and FP collects the evaluation of the
forces f1 and f2 as well as the boundary information.
Once the approximation to P is known at every grid point, ∇P can be approx-
imated by choosing A, B, C, D and E in order to produce ∂P

∂x and ∂P
∂y . These

problems are Poisson-like, and the same difference scheme can be applied to
obtain the approximation to u and v.

1This is vector of all the elements of {pi,j : 1 < i < m, 1 < j < n}, regarded as
a single column.
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3 Numerical Tests

For the numerical tests, we selected 2 polygonal regions, both of them ap-
proximations to real geographical locations. They will be denoted as Havana
bay (hab), and Michoacán (mic) (See figure 1). They were scaled and shifted
to lie in [0, 1]× [0, 1]. For these boundaries, structured grids with 21, 41 and
81 points were generated with UNAMALLA [8] by minimizing the functional
Hω −A with default parameters [2].
The closed form solution of Stokes equation was defined to be the zero force
Papkovich-Neuber solution [9] given by

u = −1/2x3 + 9/2x y2 + 1/2x
(
3x2 − 3 y2

)
+ 1/2 ex sin y,

v = −9/2x2y + 1/2 y3 + 1/2 y
(
3x2 − 3 y2

)
+ 1/2 ex cos y,

P = 6x2 − 6 y2.

These were also the values for the Dirichlet condition.
The sparse systems obtained in each case were solved by sparse Gaussian
Elimination; the quadratic error norms ‖ · ‖2 for the tests were calculated as
the grid functions

‖U − Û‖2 =

√∑
i,j

(Ui,j − Ûi,j)2Ai,j , (7)

where U = (Ui,j) and Û = (Ûi,j) are the exact and approximated solution at
the i, jth-grid node respectively, and Ai,j is the area of the i, j-element. The
empirical orders Ou, Ov and OP between two consecutive grid orders were
calculated according to the formula

log (Ei/Ej) / log (nj/ni) , (8)

where Ei is the quadratic error associated to the numerical solution calculated
with a grid with ni points per side. Errors and orders are summarized in table
1. One must note that the irregularity of the selected boundaries is reflected
in a slight loss of order, but the same fact is the main argument to conclude
that the approximations obtained are satisfactory; the numerical results pre-
sented show that, the natural extension of the discretization addressed in [5]
for Poisson’s equation, can indeed be used with ease to approximate the solu-
tion of Stokes equation on very irregular regions by means of a simple scheme.
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Michoacán Havana bay

Fig. 1. Test regions.

Table 1. Quadratic error for the test problem

Region ‖u− û‖2 Ou ‖v − v̂‖2 Ov ‖P − P̂‖2 OP

hab21 1.0175E-03 1.1855E-03 1.0552E-03
hab41 3.0171E-04 1.82 4.0434E-04 1.61 3.8954E-04 1.49
hab81 1.1312E-04 1.44 1.2845E-04 1.68 1.0702E-04 1.90
mic21 1.0561E-03 8.9833E-04 1.6506E-03
mic41 2.7614E-04 2.01 2.6896E-04 1.80 6.5440E-04 1.38
mic81 1.2924E-04 1.12 8.1268E-05 1.76 3.1795E-04 1.06
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